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ABSTRACT

This final report on the Grant No. F49620-97-1-0148 consists of somewhat abridged
versions of all previously submitted progress reports, placed in individual sections, fol-
lowed by a section on the progress made in the last 12-month performance period and on
promising future directions for our work.

A broad understanding of all aspects of image formation, detection, and processing
in information theoretic terms has been achieved in our studies under direct support of
the grant. Specifically, we have (i) shown how prior knowledge about the object being
imaged, particularly about the support of its intensity distribution, can be regarded as a
" gain of information; (ii) computed the theoretical limit on the information throughput,
i.e., the channel capacity, of an astronomical imaging system; (iii) computed theoretically
and in simulation the detailed characteristics of the dynamics of noise versus information
in imaging under turbulence when support information is employed as a post-processing
tool; and (iv) gained a preliminary understanding of the inverse relation between noise and
information.




1. REPORT ON PROGRESS MADE DURING THE PERIOD 3/97-8/97

The first recognition that image formation may be usefully described from the view-
point of Shannon’s statistical information theory dates back to Fellgett and Linfoot’s pio-
neering work [1] in 1955. They argued for two competing viewpoints on the assessment of
the quality of image formation:

1. How similar is the image to the object? This could be studied by defining a metric,
that measures the departure of the image from the object, in terms of optical system
transmission factors.

2. How faithfully does the system image a class of objects, in the sense of the closeness
of the information content of the image set relative to that of the object set?

By shifting attention from a single object to a whole class of objects, the second
viewpoint provides for a very powerful characterization of the imaging system as a conduit
for the passage of information. This is an inherently more useful viewpoint if the objective
of study is the optimality of the design of an optical system to image a variety of objects.
For example, if a whole class of satellites which all contain the same gross features is the set
of objects for which an imaging system is being designed, then it is clear that the second
viewpoint provides a statistical criterion for the best design. Indeed, since one does not
typically know in advance the details of the object being imaged, the question of how close
its image is to itself cannot even be answered.

It is this motivation that characterizes our work, based on the use of statistical infor-
mation entropy and other related ideas.

A. Object Set

We can specify the object set statistically by a probability distribution PIO( f}] on
the object spatial spectrum O( f ), the latter defined as the Fourier transform of the two-
dimensional intensity distribution of the object. The object illumination is assumed inco-
herent here, as is true for most astronomical sources or solar-illuminated satellites. The
object spatial spectrum at a spatial frequency is directly proportional to the complex fringe
visibility for interference of light received at two apertures with vector separation propor-
tional to the spatial frequency vector. This is the essence of the Van Cittert — Zernike
theorem, which governs interferometric image reconstruction.

We begin with a circular Gaussian model for P [O() :

3 F 1 S B 2 /(202 _
PlO(f)] = 1 16PN (205 )
I;IZWS(f)

where the product is over a discrete set of spatial frequencies and ago( f Jrepresents the
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standard deviation of the object spectrum at frequency f The question we asked and
successfully answered is the following: Relative to this object set, what is the statistical
information successfully transmitted by a simple optical system working under conditions of
turbulence induced phase aberrations at high light levels? In order to answer the question,
we must first discuss how an optical system processes an image under turbulent conditions,
but without the complications of either the detector or low-light-level shot noise.

B. Imaging under Turbulent Conditions

An incoherent imaging system is a linear system in the sense that the image of a
collection of incoherent point sources is a superposition of the elementary images (point
spread functions (PSFs)) of the individual point sources. Since an incoherent object may
be regarded as a contiguous collection of such point sources, the image and object intensity
distributions may shown to be related through the PSF by a convolution. In the Fourier
space, therefore, the object and image spatial-spectrum amplitudes, I( f ) and O(f), are
related by a simple product involving the Fourier transform of the PSF, also known as the
optical transfer function (OTF), H(f):

I(f) = O(HH(). ‘ (2)

The OTF of an optical system under turbulent conditions is on average a product of the
system OTF in the absence of turbulence and the OTF that can be directly associated
with the turbulent-induced amplitude and phase fluctuations.

Of course, under turbulence, there arise fluctuations in the recorded image intensity
spectrum, since the OTF suffers from fuctuations. We may see from Eq. (2) that the image
noise is multiplicative, which is a major analytical complication. We adopt an approximate
procedure to include this noise in the analytical treatment that follows.

As we have indicated, the mean OTF is a product of the system OTF Ho( I ) and the
mean atmospheric OTF (Hatm(f)):

(H(F)) = Ho(F)(Hatm(F)). (3)

The sum of the variances of the real and imaginary parts of the OTF, which we simply call
the psuedovariance of the OTF, may be approximately computed with a slightly modified
structure function for the turbulence-induced random phase distribution in the pupil. The
result is

var[H(f)] = [1 — exp(—C N F2| 12 /r8) | Ho(F)P%, (4)

where F is the system focal length, A the light wavelength, ro the Atmospheric coherence
diameter, and C is a constant of order 3.44. The correlation of the fluctuations of the OTF
at two different spatial frequencies may also be computed analytically with the result,

(AH(HAH (1)) ~ var[H(HIS7 7 (5)
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under the assumption of strong turbulence ro — 0. In other words, in this limit, two
different spatial frequencies have uncorrelated noise.

It is worth noting that the preceding analysis is a conditional analysis of the mean and
the fluctuations in the image, conditioned on the precise specification of the object. We
must bear in mind that an object is drawn from a statistical set, the so-called object set.
But it is the conditional statistical distribution of this sort that governs the degradation
of information in an object by the random fluctuations of the processing system. When
the related conditional information is averaged over the object set, we get a measure
of what portion of the information in the image is unreliable and therefore not faithfully
transmitted from the object set. Shannon defined the successfully transmitted information
as the following mutual information:

H[0;I] = H[I] - H[I/O] = H[O] - H[O/1], (6)

where the object information content is given by

H[0] = - P[O]log P[O], (7)
o

with the object probability distribution given by expression (1). Similar expression may
be given for the image information H[I]. For the conditional information H [1/0] (or
H{[O/I]), one has a similar expression:

H[I/0) =~ Y P[O|P[I/0]log P[I/0), (8)

o,I

where P[I/0] is the conditional probability distribution of the image spectrum, given a
specified object spectrum. If we make the tenable assumption that the OTF H( f ) in
Eq. (2) is a result of a linear superposition of many independent contributions, as true in
the strong-turbulence limit, then the conditional statistics of the image spectrum can be
accurately described by a circular Gaussian probability distribution with the mean and
the variance given by Egs. (3) and (4).

With the preceding justifications and approximations, we can now discuss two cases
of some practical interest.

1. Low Variability in the Object Set, ao(f) —0

In this case, the image spectrum probability distribution, which requires an integration
of the object probability distribution with the conditional distribution P[I/O] over the
object realizations, reduces approximately to a product of two Gaussian distributions.
Such integrations are straightforward. The final result for the successfully transmitted
information, the mutual information of Eq. (6), is the following:
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H[O; 1) = log [1 + a2 (DIHP) /o3 10(F],
f

-t

LA / & flog [1 + a2 (AIHFNE /o 0(F], (9)

where the conditional variance o? /O( f) in the image when the object is known a prior:
takes the form

a2/ % (O(F)P Ho(F)I. (10)

There are three remarks in order here. Note that frequencies beyond the system
cutoff are excluded from Eq. (9), since for such frequencies no information is transmitted
by the system. When the conditional variance in the image o7/0 vanishes, the system
transmitts perfectly the full, infinite amount of information there is in each of the infinitely
accurately specified objects. (This can be made finite by requiring only a certain finite
decimal accuracy of the object spectrum specification.) Finally, when the object variability
goes away, og( f ) —+ 0, then there is no information to transmit. A fixed object carries no
information in the sense of its potential to carry a signal.

2. Infinitely Strong Turbulence, ro — 0

In this limit, the information successfully transmitted by the optical system becomes
independent of the object set information, in particular the variance of the object set. This
is understandable, since in the strong-turbulence limit the atmosphere filters out all but
the lowest spatial frequencies, and so it is expected that object variability will have little
bearing on the information actually passed on to the image.

I1. REPORT ON PROGRESS MADE DURING THE PERIOD 9/97-8/98

The work during this period was focused on gaining the vital understanding of how
an a priori constraint like the knowledge of the support of the image, to be simply called
the support constraint hereonwards, can lead to improved statistical information in the
image. An indirect, although somewhat more traditional, approach that we first took
was to evaluate the reduction of noise brought about by the imposition of the support
constraint. We summarize below only the salient features of this work, but leave its more
complete discussion to the refereed publication [3] accompanying this Report. The second
part of the report is a discussion of our more direct approach to the problem, in which we
discuss the information content of the image before and after the imposition of the support
constraint.




A. Noise Reduction in Image Deconvolution with Support Constraint

Use of a priori constraints is often made in image reconstruction algorithms to improve
the final image beyond what the limited observational data can generate. One way in which
the improvement can take place is through noise reduction that is directly enabled by the
a priori information. We summarize here how the knowledge of the support of the object
can lead to significant noise reduction in a linear deconvolution of raw images that are
degraded by atmospheric turbulence.

The spatial spectra of the object and the image, O(%) and I(%) are related very simply
through the optical transfer function (OTF) H(#),

1(@) = O(@)H (). (1)

For well-corrected optics and at high light levels with noiseless detectors, the image noise
in the spatial frequency (@) plane is governed by the fluctuations of H(i) arising from
turbulence.

When the image is constrained to have a known finite support described by the sup-
port function s(Z), equal to 1 for Z inside the support and 0 outside, then the support-
constrained and unconstrained images are related by the multiplicative factor s(Z) in the
physical domain and by convolution with the support spectrum S (%) in the Fourier plane:

L(@) = / I(@ — @) S(@) . @)

The spatial spectrum (simply called spectrum hereafter) of the image noise can be
constructed in terms of the two mean squares N(#) = ([I(%) — (I(%))]*) and M (%) =
(lI(%)—(I(@))]?). The relation between the noise power spectra before and after imposition
of the support condition follows from Eq. (2) supplemented by the result (1). The following
approximate convolution relation may be shown [3] to hold for the mean squared modulus:

Ns(d) == /dZUIN(TI — UI)S(ﬁl)C_(llz)D(ﬁ(Aful), (3)

where Dy represents the phase structure function for atmospheric turbulence.

A powerful, although somewhat approximate, picture of the relation (3) between the
constrained and unconstrained noise spectra emerges when one expands N(¢ — @) in a
Taylor series around #; = 0. Such an expansion leads to an expansion of Eq. (3) in deriva-
tives of N(&) with increasing derivative order from one term to the next. The coefficients
of the derivative terms are expressed as tensor moments of the support spectrum. With
the retention of only the first three terms in the expansion, we obtain

AN(@) = N,(&) — N(&)

— B-VN(it)+ =D : VVN(2), (4)




where

B=- [ dus@e0mpaomg (5)

is a vector and

D= / Py S(@)e= (/DD i (6)

is a second-rank tensor.

Note that the equation (4) formally describes a noise transformation that contains a
drift, or ballistic transport, term and a diffusive spreading term. The physical implications
of this viewpoint are noted in detail in Ref. 3.

For an inversion-symmetric support like a circle (or an ellipse), the drift vector B
vanishes by symmetry. The noise transport induced by the support constraint in the
spatial frequency plane is then purely diffusive. Such transport enables a reduction of
noise. All one has to do is to leave unchanged the original, unconstrained data at those
spatial frequency locations where the transformed data are noisier than the original data,
as pointed out by Tyler and Matson [4] in their simulations of the same problem. With
this picture, we can easily evaluate the total noise reduction possible in one application of
the support constraint. It turns out, as shown in detail in the attached manuscript, that
we have an analytical expression for the ratio of the total noise reduction to the total noise
in the original image:

AW(D qo 1% —__x22
F(d)(o-)z W@ =~ |:/\f/r0):| e 26(x7/m0)? (7)

where o is the diameter of the support, Af/ro is the diameter of the atmospheric seeing
disk, and C is a number of order 10.

Note from Eq. (7) that the best fractional noise reduction F(@ is obtained when
the support is comparable in size to the seeing disk. Equation (7) represents one of the
most important results of the work, and is confirmed, more or less quantitatively, by the
simulations of Tyler and Matson [4]. In the next subsection, we begin a description of
this problem from the viewpoint of information theory. Details may be found in another
accompanying article [5].

B. Information Dynamics in Seeing-Limited Image Deconvolution with Support Constraint

Consider the mutual information, as defined by Shannon to be the information suc-
cessfully transmitted through a communication channel. The mutual information I(u) at
spatial frequency @ of the image spectrum is the difference,

I(ﬁ) = 7'to(ﬁ) - ’Ho|i(ﬁ)7 (8)
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of the (unconditional) object information H,(&) and the conditional object information
H,i(#), conditioned on the observation of the image spectrum. According to Shannon,
each kind of information is given by averaging the logarithm of the corresponding proba-
bility density function (pdf):

Ha(@) = (g PL(O@) = — [ Po(O(@) log PoO@) P O(D);

() = —(log Pa O@II@)) = — [ P(O(@), 1)) log Pos( Q@) @)d* 0@ ()
©)

The actual values that the statistical variables o,1 can assume are always denoted by the
corresponding upper-case symbols O, I.

The pdf’s are related because of the imaging equation (1). For a turbulent atmosphere,
as true for a ground-based imaging system, the OTF H has random variations that can
be described adequately by the Kolmogoroff hypothesis [6].

An application of the support constraint in the image domain changes the image
spectrum by means of a convolution of the original image spectrum and the spectrum
of the support function. Since the object spectrum is unchanged, the application of the
support constraint causes a change in the system’s mutual information (8) by amount

AZ(@) = — [uﬁ;}(ﬁ) — Hopu(@)] - : (10)
Tt is enough for our purposes thus to compute the change in the negative conditional
information —H,|;.

Assuming that the change of pdf’s under the support constraint is small, we can carry
out a first-order analysis for the change AZ. After some tedious algebra, one may show
that correct to the lowest-order changes of the pdf’s, the change in information throughput
is given by the simple relation

AT(4) = / f [APy,(I(@)|0(2))] Po(O(8)) log Pops(O@) (@) 0@ I(@). (1)

The conditional pdf P;,, when the support constraint is not applied yet, is easily
evaluated in terms of the known object pdf and the pdf of the OTF which we can compute
based on the Kolmogoroff hypothesis of turbulence. Indeed from Eq. (1), since for a given
O(@), I(@) and H(4) are proportional to each other, the conditional pdf P;j, is simply
related to the pdf Py of the OTF: ’

Py, (I(i0)|0(@)) = Pa(H (@) = I(2)/0(@))J” (H/1), (12)

where J® (H(#@)/1(%)) is the Jacobian determinant of the transformation from the complex
H(i@)—plane to the complex I(#)—plane. Since O(i?) is held fixed in the conditional pdf
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calculation, the Jacobian is simple and turns out to have the value 1 /|0(%@)}?. The inverse
conditional pdf P,; can in turn be computed by means of the Bayes theorem,

e PaoI@IOG@)Po(O(@)
Pl O@I@D) = 5, (1@I0@)P.0@) PO 1)

When other sources of noise are present as well, as for example in photon counting at
low count rates, their effects may once again be integrated into a single pdf by further
applications of the Bayes theorem for compounded random processes.

When the support constraint is applied in the image, the image spectrum changes
via Eq. (2). However, because of the linearity of that equation, the statistics of the post-
support spectrum I (s)(#) are rather simply related to those of the pre-support spectrum
I(i@). It may be shwon under rather general conditions that the statistics of the OTF
H(%) are Gaussian and therefore, by Eq. (12), so are the conditional statistics of ¢. Since a
linear combination of Gaussian random variates too has Gaussian statistics, the conditional
statistics of the post-support spectrum are also Gaussian. Under these conditions, the
change of mutual information AZ(%) given by Eq. (11) takes on a more explicit final form

AZ(@) = — A <|{)—((-—’) - <H(«r)>|2> - [arg@)esru@EI@, 09

p)
Oh

where o2 denotes the variance of the circular Gaussian pdf which describes the fluctuations
of the OTF. Like in Eq. (11), the prefix A designates the change in a quantity when the
support constraint is applied.

III. REPORT ON PROGRESS MADE DURING THE PERIOD 9/98-8/99

Three major accomplishments were made during this period. The first concerns the
publication of the paper “Dynamics of turbulence induced noise in image deconvolution
with support constraint” in the J. of the Optical Society of America (JOSA A, vol. 16, pp.
1769-1778 (1999)). In this paper, discussed in the Sec. II A and accompanying the report,
we discuss the improvement of the information content of the decovolved image in some-
what indirect terms of reduction of noise in the image when a priori knowledge of the image
support is used. The second concerns a direct study of the information transport under
the application of support constraint. This paper, discussed in Sec. II B and attached here
in reprint form, was presented at the Fundamental Issues in Image Formation, Detection,
and Processing workshop organized by me at UNM’s Center for Advanced Studies, Febru-
ary 6-7, 1999. Numerical simulations confirming the improvement of mutual information
are presented here in detail. The third accomplishment is our explicit calculation of the
information capacity of an imaging system limited by atmospheric turbulence and additive
detector noise. This work [7], attached here in preprint form, was invited, presented, and
well received at the recently concluded Air Force Maui Optical Station (AMOS) Technical
Conference, Aug 30 — Sep 3, 1999. A longer and more complete paper [8] on this work
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was submitted, refereed, and published in Optics Communications. This work has made it
possible for us to begin to develop a quantitative understanding of the statistical informa-
tion content of a priori knowledge such as support, which was a key task that we had set
out to perform under the present Contract. Finally, a paper entitled “Noise Transport and
Removal in a Speckle Imaging Algorithm,” co-authored with David Tyler, was presented
at the Annual Optical Society of America Meeting in Santa Clara, September 26-30, 1999.

A. Preliminary Simulations of Information Dynamics

We have used a variety of computer programs and a telescope imaging simulation code
to generate ensembles of data and corresponding mutual information plots. First, an object
ensemble of five different scenes was synthesized using Gaussian “stars” with various widths
and relative intensities. These objects were used as inputs to a simulation modelling the
effects of the turbulent atmosphere, telescope diffraction, and finite-resolution detection.
The simulation generated ensembles of several hundred frames of noise-corrupted imagery,
all of which were then processed using a deconvolution algorithm (to increase resolution)
and our support-constraint convex-projections algorithm (to remove noise). Finally, the
mutual information over the data and object ensembles was calculated; first for data
processed with only the deconvolution algorithm and then for data processed with both
algorithms. The mutual information was calculated for each of the central 32x32 pixels in
the image arrays, forming information “maps” of the image field. The displays (Figs. 1,
2, and 3) presented here show the spatial distribution of the statistical information in the
object set, mutual information at high turbulence (D/ro = 10), and the change of mutual
information in the image when the support constraint is applied. The overall improvement
of MI by about 5-10% is consistent with the degree of equivalent noise reduction under the
same support application.

B. Information Capacity of a Seeing Limited Imaging System

In order to gain fundamental insights into the nature of information transport and
improvement when a priori constraints are applied, we must first understand the maximum
information carrying capacity of an imaging system.

We generalize our treatment of Sec. II to include an additive, zero-mean, Gaussian
random noise source,

1(d@) = O(@)H (&) + E(4), (1)

and to include at once a finite region of the spatial frequency plane in our considerations.
The description at the level of individual pixels is not complete because it ignores interpixel
correlations over a finite region. The definitions must be suitably modified, with functional
integrals replacing ordinary integrals on the right-hand sides.

For D/ro >> 1, as before, the OTF [H(i)] has Gaussian statistics, under which the
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conditional statistics of the image spectrum [I(%)] conditioned on the knowledge of the
object spectrum [O(#)] are also Gaussian. This permits the calculation of the conditional
image information entropy #;j, over the complete system pass-band, |#| < D/(\f), as well
as the image self information #; — and consequently the MI - in terms of the so-far unknown
object spectrum statistics. Under the constraints of normalization of probabilities, fixed
mean emissive power F' of objects over their ensemble, and fixed mean integrated power
spectrum G over the system pass-band, we may maximize the MI throughput of the system
by varying the statistical ensemble of objects. This maximization has been carried out with
the help of Lagrange multipliers, and leads to the following expressions for the maximum

statistical information transmitted by the system, or its information capacity (details are
in Refs. 7 and 8):

C—Coo v —logdetg,  gij = exp[—(1/2)Dy(Afld: — 1), (24)

when additive noise is negligible, and

1/2 P G4 LS WglH;|™?
C = log S +Y log [ £2—=% 2; ?lz i , (20)
VTWE[AA, | = We|Hi|

when the additive noise dominates and turbulence is absent. In Eq. (1a), Ce represents
the capacity under infinitely strong turbulence for which only the dc pixel carries any
information. The symbol P represents the number of spatial frequency pixels, each of area
AA,, within the system pass-band, Wg/AA, the additive noise at each pixel, and H; is
the value of the (noise-free) OTF at the ith pixel. The detailed behavior of the preceding
expressions for capacity is discussed in Refs. 7 and 8.

IV. REPORT ON PROGRESS MADE IN THE FINAL PERFORMANCE
PERIOD 9/99-8/00 AND FUTURE DIRECTIONS

Two key advances were made during the last performance period. The first involved
completion of the paper on the information capacity of a seeing and additive noise limited
astronomical imaging system. The paper was submitted, refereed, and published [8] in
Optics Communications in April 2000. Secondly, we have applied the notion of Fisher
information, a measure of information in statistical data when estimating a particular
observable, to gain a solid understanding of the inverse relation between noise and infor-
mation. Investigating the deep connections between the Shannon and Fisher information
measures, as yet largely unexplored in the literature, still lies ahead of us, but our compu-
tations of the Fisher information under a variety of imaging conditions have already given
us useful insight into these connections. We now describe our, as yet unpublished, studies
on Fisher information.
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A. Fisher Information and Minimum Estimator Variance

Counsider a set of parameters {6;} that we estimate by making measurements {z;} that
are typically statistical in character. Let the statistics of the measurements be described
the probability density function (pdf) P(Z|{6}). The Fisher information matrix J is defined
by specifying its ij element as

oy = (e PRI

1)
where the triangular brackets denote averaging over the pdf P itself.

The parameters 6; are inferred from the data by means of estimators, suitably con-
structed functions of the data, among which unbiased estimators occupy a special place.
For, their averages are defined to be identical, by construction, to the parameters them-
selves. If C represents the covariance matrix of any unbiased estimators, é,(:i:') for the ith
parameter 6;, then C and J obey the following Cramer-Rao matrix inequality,

c>J1, (2)

in the sense that C — J~! is a nonnegative definite matrix. A necessary condition of this
nonnegativity is that the variance of the ith estimator ;(Z) cannot be smaller than the
ith diagonal element of the inverse Fisher information matrix J -1

var(f;) > (371)is. (3)

The inverse of the Fisher information thus provides a measure of the minimum uncertainty
in the determination of unbiased estimators. It is in this statistical estimation sense that
Fisher information represents information. For estimators that are biased, a similar result

as Eq. (3) holds.

The imaging problem can be regarded as an estimation problem in which statistical
image data are employed to infer the object being viewed. This approach has been em-
ployed in the last few years to analyze certain aspects of image formation, detection, and
processing, but its relation to Shannon information is not well understood. It is this rela-
tion, which we must elucidate before we can hope to clarify the connection between noise
reduction and information gain. We have recently turned our attention to this problem.

We describe below our results for the class of estimators in which image data at a
single spatial frequency are used to estimate the object spectrum at that frequency. The
Fisher information matrix reduces, at each spatial frequency, to a single number that can
be easily computed under certain approximations.

For D/ro >> 1 and in the mid-frequency range, the OTF has nearly Gaussian statis-
tics, and so are the conditional image statistics, given an object, statistics that determine
Fisher information:

P(I;|0;5) =

Wé'jj exp [—(IF — OX(H;)(I; — O5(H;))/Cjs] » (4)
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where (H;) is the mean OTF at spatial frequency #@; and the image amplitude spectrum
variance at that frequency is

Cj; = |0; o} (ii5) + o (5)

The first term on the right hand side of Eq. (5) represents the fluctuation in image data
due to atmospheric turbulence and other OTF fluctuations, their variance having been
denoted by o, while the second term represents the additive zero-mean detector noise
taken to be independent of spatial frequency.

For the Gaussian pdf (4), the computation of Fisher information is straightforward.
For the case that the object spectral amplitude O is purely real, we have for the reciprocal

of Fisher information
g1 = d1n P(1;10;)1"
7 90;

:9_12;[1 +1/(SNR- Ulzz)]4 (6)
4 [1+ 1/(SNR-a2)?)

where SN R is the power-spectrum “signal to noise ratio” at the spatial frequency @j,

0%
SNR=—2. (7)
G'N .

The OTF variance o7 under the conditions we have assumed, D/ro >> 1 in the mid-
frequency range, is nearly the same as the speckle tranfer function, and takes the value

o? = 0.435 * (ro/D)? * Ho(u;), | (8)

where Ho(u;) denotes the OTF of the telescope in the absence of turbulence, i.e., the
diffraction-limited OTF, at frequency u;.

In Fig. 4, we plot the result (6), which represents the best lower bound on the variance
of an unbiased estimator of the object spectrum at that frequency. It is clear that for each
D/ro value, as SNR increases, the minimum estimator variance decreases as expected.
For the same SNR, on the other hand, the minimum estimator variance increases with
D/ro, once again as expected.

Against the best theoretical performance (6) predicted by the Fisher information
analysis, we may compare the actual variances of certain well known estimators. We
considered three estimators, namely the inverse filter, the Wiener filter, and the filtered
back-projection estimator. Only the first of the three is an unbiased estimator, while
the third is so only when SNR is infinitely large (on = 0), but a simple multiplicative
correction to Fisher information is all that is needed to include a nonzero bias when
computing the theoretical minimum bound on estimator variance.
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In the next figure, Fig. 5, we present a plot of the minimum estimator variance for the
case of atmospheric turbulence alone, as a function of spatial frequency. With increasing
D/rg, the minimum variance rapidly approaches the value |0;]?/4, given by Eq. (6) under
zero additive noise (SNR = 00).

B. Future Studies

There are several directions in which Fisher-information-based studies of the perfor-
mance of an imaging system are being conducted by us at present. Among them, the three
most notable directions are the following:

1. The connection between Fisher and Shannon information must be fully understood
before noise-based and information based limits of performance can be meaningfully
compared. There is a slight conceptual difficulty in finding this connection — Fisher
information governs the precision of statistical measurements of one or more fixed
parameters, while Shannon information applies when statistical distributions of para-
meters are involved. By extending the definition of Fisher information to statistically
specified parameters, the two measures of information can both be made to apply to
the imaging problem. This is the approach we adopt. Our early results are encourag-
ing, but thorough simulations are needed for complete understanding.

2. The dynamics of Fisher information under application of prior knowledge, e.g., sup-
port, are well worth investigating. Such studies will enable us to understand how
prior knowledge of a certain kind affects the distribution of information/noise in the
physical and spatial-frequency planes. Like our Shannon information based work,
simulations are needed to understand these dynamics well.

3. Iterative image processing techniques like Lucy Richardson and expectation maxi-
mization (EM), and maximum a posteriori probability (MAP) methods all suffer from
the quiet indignity of having no robust stopping criteria. These techniques, if left
to converge, lead to meaningless data-independent reconstructions. Both Shannon
and Fisher measures of information have the promise of furnishing objective stopping
criteria to decide at what iteration number to regard the reconstruction as having
yielded the "best” image. The best image must maximize information contained in
the measured data and prior knowledge of the object attributes (like support, posi-
tivity, etc).
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Fig. 2. Mutual information throughput at high turbulence, D/r0=10
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